
簡単！軽くてカラフルな Voxelized Game Engine

Last Updated Date: 2025-12-3

Date Created: 2025-12-15

武井陽靜 (Yousei Takei)

_@tsei.jp

mailto:_@tsei.jp

ボクセル

・世界で最も人気なゲームで使用

・データ効率と実装簡易性を両立

TypeScript/Rust/glre

・ブラウザ実行と高性能計算

WebAssembly/WebGL/WebGPU

・クロスプラットフォームな 3D 処理基盤

Proof of Concept

デモ: glre.dev

1

現状のコンテンツの課題 （as-is） 改修ポイント （to-be）

Unity 前提のライブラリ ライブラリとして配布

・複雑な環境構築 ・npm install のみ

・プロプライエタリ ・オープンソース

・Web 対応が困難 ・ブラウザ直接実行

専用データ形式 標準データ形式

・Unity 専用アセット ・画像データ

・バイナリ形式 ・CDN 配信対応

・変換ツール必須 ・キャッシュ効率

1.1 簡単！すぐに実装できる

Web 標準技術によるライブラリ化で開発障壁を除去

2

地図難しい

- PLATEAU 座標系 (EPSG:6677 - JGD2011 / 日本平面直角座標系第 IX 系)
 - 原点は日本中央部に位置し、偽東距/偽北距を持つ
 - X 軸は東向き（正の値は東方向に増加）
 - Y 軸は北向き（正の値は北方向に増加）
 - 単位は原点からのメートル
 - 東京エリアのモデルは通常 X 値が約-5000m、Y 値が約 48000m
- ウェブメルカトルタイルシステム
 - ズームレベル 0-18 のグローバルタイリングスキーム
 - レベル 18 は北緯 35° で約 125m/タイルを提供
 - タイル座標は東方向（X）と南方向（Y）に増加
 - 各タイルは 256×256 ピクセルを含む
 - ビューア/ワールド座標系: +X=東, −Z=北, +Y=上。
- 重要な変換要件: これらのシステム間の変換には以下が必要です：
 1. PLATEAU メートル座標を地理座標（緯度/経度）に変換
 2. 地理座標をウェブメルカトルタイル座標に投影
 3. テクスチャマッピング用のタイル内の正確なピクセルオフセットを計算
 4. 目に見える位置ずれを防ぐためサブメートル精度を維持

1.2 簡単！座標系

3 つの異なる座標系を画像ピクセル基準に統合し、座標変換の複雑性を排除

3

3D モデル （as-is） ボクセルデータ構造 （to-be）

.obj + .mtl + 画像 3 次元の 0/1 配列

三角形の集合: 1 ブロック = 0 or 1:

・衝突判定: O(n²) ・衝突判定: O(1)

・全三角形を検査 ・座標から直接判定

・AABB 等で最適化が必要 ・整数計算のみ

レンダリング: レンダリング:

・数万回の draw call ・1 回の draw call

・複雑な material 管理 ・ビット演算で最適化可能

1.3 簡単！シンプルなデータ構造

三角形ベースの複雑なデータから 0/1 配列への転換により、演算を最適化

4

重すぎてブラウザで動作不可 （as-is） ビット演算可能！1 回の draw call （to-be）

数十～数百 MB の 3D Model → 0fps 最適化された処理 → 120fps

複数 Material → 数万回 の draw call (36,872) 統合 Material → 1 回の draw call

複数 Texture → CPU/GPU 間転送過多 1 つの Texture → 最小限データ転送

複雑な形状 → メモリ不足 ビット演算 → インスタンシング描画

参考: https://www.youtube.com/watch?v=qnGoGq7DWMc

2.1 軽い！描画処理

数万回の draw call を 1 回に集約、120fps 描画を実現

5

https://www.youtube.com/watch?v=qnGoGq7DWMc

重量な 3D モデルファイル（as-is） 画像データとして配信 （to-be）

fbx / obj + mtl + 複数テクスチャ PNG 画像 （256×256×256 voxel → 4096×4096 pixel）

・ファイルサイズ: 数十～数百 MB ・1 区画 = 1 画像ファイル

・ロード時間: 数分 ・タイル分割し部分的データ取得

・複雑なアセット管理 ・ブラウザキャッシュ活用

・荒い見た目になるまでデータ削減必要 ・CDN 配信対応 (Cloudflare R2)

2.2 軽い！軽量な地形データ

3D モデルから画像データへの変換により、部分配信とキャッシュ活用で高速起動を実現

6

一般的なゲームエンジン （as-is） 我々のソリューション （to-be）

Unity/Three.js/Babylon.js 最小限コード （1000 行以内）

・数百 MB ～数 GB のエンジン ・WebGL API 以外依存なし

・複雑な依存関係 ・アップデート対応不要

・定期的なアップデート対応 ・高速初期レンダリング

・高い学習コスト ・管理コスト最小化

保守性のメリット

・処理が軽量 → パフォーマンス向上

・管理コスト削減 → 開発効率向上

・依存関係なし → 技術的負債回避

・初期読込み最小化 → UX 向上

2.3 軽い！軽量な処理コード

1000 行以内の依存なしコードにより、保守コスト削減と高速起動を両立

7

3D 都市モデル Open Data の制約 （as-is） 我々のソリューション: 航空写真活用 （to-be）

LOD1 （全国対応） 国土地理院航空写真

・色データなし ・全国対応の高解像度画像

・単純な直方体 ・PLATEAU 建物形状 + 航空写真色

LOD2 （限定地域） ・上空視点に最適化された色再現

・色データあり（一部の駅周辺等のみ）

3.1 カラフル！航空写真の色データ

PLATEAU LOD2 の地域制約を航空写真との組み合わせで解決し、全国対応可能

8

航空写真単体の問題 （as-is） 3D 建物形状との組み合わせ効果 （to-be）

撮影時の建物影がノイズとして混入 建物の高さ情報により影の理由が明確

→ なぜ影があるのか理解困難 → 影の理由が納得できる

→ 不調和な印象 → 計算コストなしで高品質

参考: https://maps.gsi.go.jp/#18/35.662652/139.634084/&base=ort&ls=ort&disp=1&vs=c1g1j0h0k0l0u0t0z0r0s0m0f0

3.2 カラフル！航空写真による綺麗な見た目

航空写真のノイズを 3D 形状情報により意味のある影に変換、計算コストなしで高品質描画

9

https://maps.gsi.go.jp/#18/35.662652/139.634084/&base=ort&ls=ort&disp=1&vs=c1g1j0h0k0l0u0t0z0r0s0m0f0

利点:

・整数座標 → 精密な配置

・O(1)衝突判定 → リアルタイム編集

・統一データ構造 → シンプルな実装

・ネットワーク配信 → マルチプレイ対応

ユースケース:

・都市計画シミュレーション

・建築プロトタイピング

・教育コンテンツ作成

・バーチャル観光体験

3.3 カラフル！ボクセル形式はプレーヤーによるデータ操作が簡単

都市データを活用した多様な Web 体験を提供

10

実現した価値提案

簡単: Web 標準技術で動作可能

・ライブラリ化による開発障壁除去

・座標系統合による実装簡易化

・シンプルデータ構造による軽量な計算

軽い: Web 最適化された描画エンジン

・1 draw call による描画効率化

・画像配信による高速起動

・1000 行未満のコード

カラフル: 全国対応の高品質表示

・航空写真による全域色付け

・影効果による調和向上

・256³ 種類ブロック

技術革新のポイント

データ変換: 3D Model → Voxel → Image の変換

座標統合: 複数座標系をピクセル基準に統一

描画最適化: ビット演算とインスタンス描画

配信効率: 分割による部分配信とキャッシュ活用

まとめ

Thank You！

11

